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The pre-mRNA splicing machinery recognizes exons ternative splicing events (Takagaki et al. 1996), this
mechanism is unlikely to account for all regulated splic-and joins them together with remarkable precision to

form mRNAs with intact translational reading frames. ing observed in vertebrates. There are many examples
in which different regulatory programs run concurrentlySplicing requires canonical sequences at the intron/exon

border, and mutation of these sequences may cause ab- within the same cell, suggesting that different alterna-
tively spliced pre-mRNAs are regulated by distinct pro-normal splicing patterns that affect gene expression and

cause disease. Recent studies indicate that distinct se- grams that use different sets of cis elements and trans-
acting factors. Strong evidence that cell-specific factorsquence elements that are distant from the splice sites

are also needed for normal splicing. These elements can are responsible for alternative splicing comes from stud-
ies on intronic elements that mediate cell-specific splicingaffect splice-site recognition during constitutive splicing

and also play important roles in directing alternative (Guo et al. 1991; Tacke and Goridis 1991; Black 1992;
Gooding et al. 1994; Huh and Hynes 1994; Ryan andsplicing, a common phenomenon in which multiple

mRNAs, encoding functionally distinct proteins, are Cooper 1996). One model system in which such ele-
ments have been identified is the cardiac troponin Tgenerated by use of different combinations of splice

junctions, according to developmentally regulated or tis- (cTNT) gene (Ryan and Cooper 1996). Figure 1A shows
a diagram of cTNT exons 4–6, in which the alternativesue-specific programs. A number of auxiliary splicing

elements required for cell-specific modulation of alterna- exon 5 is included in embryonic striated muscle and is
skipped in the adult. Exon inclusion in embryonic mus-tive splicing have been found within introns that flank

alternative exons. A second set of splicing elements, ex- cle requires intronic elements, referred to as ‘‘muscle-
specific splicing enhancers’’ (MSEs), located a short dis-onic splicing enhancers (ESEs), are found within both

coding and noncoding exons. These enhancers direct the tance upstream and downstream of the exon (shown as
small boxes in fig. 1A). Evidence from transient transfec-specific recognition of splice sites during constitutive and

alternative splicing. The prevalence of alternative splic- tion into embryonic muscle and nonmuscle cell cultures
suggests that these elements regulate splicing via regula-ing as a mechanism for regulation of gene expression

makes it a likely target for alterations leading to human tory factors specific to embryonic muscle that promote
disease. Below we summarize what is known about vari- inclusion of the exon (Ryan and Cooper 1996).
ous sequences that affect splice-site selection and illus- Few potential regulators of vertebrate alternative
trate how changes in alternative splicing may lead either splicing have been found, but recent studies have identi-
to disease or, conversely, to an amelioration of the ef- fied one candidate, called ‘‘SWAP,’’ a homologue of a
fects of certain genetic lesions. Drosophila splicing regulator, suppressor of white apri-

cot (Zachar et al. 1987; Denhez and Lafyatis 1994;
Intronic Splicing Elements and Splicing Regulators Spikes et al. 1994). In both humans and Drosophila,

the SWAP splicing factor negatively regulates its ownAlthough modulation of the nuclear concentrations
expression at the posttranscriptional level. SWAP inhib-of constitutive RNA processing factors causes some al-
its splicing of its own pre-mRNA, which, in its unspliced
form, encodes a nonfunctional truncated protein. Recent
evidence from transient-transfection experiments dem-Received May 9, 1997; accepted for publication June 6, 1997.
onstrates that overexpressed SWAP protein in mamma-Address for correspondence and reprints: Dr. Thomas A. Cooper,
lian cells regulates splicing of several alternativelyDepartment of Pathology, Room S201, Baylor College of Medicine,

One Baylor Plaza, Houston, TX 77030. E-mail: tcooper@bcm.tmc.edu spliced pre-mRNAs (Sarkissian et al. 1996). Signifi-
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pression of the SWAP protein affects splicing patterns� 1997 by The American Society of Human Genetics. All rights reserved.
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splicing (see Coulter et al. 1997 and references within).
The sequences of some of the best defined ESEs are
summarized in table 1. These enhancers were identified
as exonic sequences that, when altered or deleted, led
to a change in the recognition of specific splice sites.
Ultimate definition of an ESE is accomplished by a gain-
of-function experiment in which the sequence enhances
splicing of a heterologous, inefficiently spliced exon. The
ESEs shown in table 1 are all functionally autonomous
and, with only a few exceptions, share several common
hallmarks described below.

The most obvious feature of ESEs is that most are
purine rich. However, purine richness alone is not suffi-
cient for splicing-enhancer activity. Experiments per-
formed both in vitro and in vivo demonstrate that nei-
ther synthetic poly-G, poly-A, nor several other tested
synthetic polypurine sequences act as splicing enhancers
in exons known to require ESEs for correct splice-site
recognition (Tanaka et al. 1994). Consistent with this,
it has been observed that, in naturally occurring ESEs,
some mutations that do not affect purine content none-
theless significantly impair the enhancer’s function
(Ramchatesingh et al. 1995). Moreover, when several
cytosine residues were changed to thymidines in the pu-
rine-rich IgM ESE, the enhancer’s activity was decreased
(Tanaka et al. 1994). Thus, it is likely that specific se-
quences, which may include interspersed pyrimidines,Figure 1 Alternative splicing in human disease. A, Alternative

splicing cardiac troponin T pre-mRNA. Exons 4–6 of the 18 exon are necessary for the function of purine-rich ESEs.
cardiac troponin T gene are shown diagramatically. Intronic elements Since no consensus sequence that describes all known
(MSEs) required for inclusion of the alternative fifth exon in embryonic purine-rich ESEs has been recognized, these elements are
heart have been identified (small unblackened boxes). cTNT exon 5

difficult to identify through simple sequence compari-contains an ESE which is represented as a gray-shaded box. B, ESE
sons. The lack of a clear consensus among purine-richmutation in an exon-splicing enhancer, resulting in exon skipping. C,

Alteration in splicing machinery: expression of distinct CD44 mRNAs, ESEs might be explained if the known enhancers derive
correlating with changes in the cellular splicing machinery. In cancer from several functionally distinct classes of elements or if
cells, the metastatic phenotype is associated with the expression of trans-acting factors that recognize these enhancers have
inappropriate CD44 protein isoforms. D, Restoration of reading frame

flexible RNA-binding–site specificities. In support of the(dystrophin), as a result of alternative splicing in BMD. The genomic
former possibility, recent studies suggest that there aredeletion is indicated by dotted lines.
qualitative differences in the way in which some purine-
rich enhancers behave when they are inserted into the
same alternatively spliced RNA (authors’ unpublishedfactor, indicating specificity in HsSWAP regulatory
data). Further evidence for the existence of multipleability.
types of ESEs comes from recent molecular screens in
which either an in vitro functional assay (Tian and KoleESEs
1995) or in vivo (Coulter et al. 1997) functional assay
is incorporated into a combinatorial selection strategyPerhaps the best understood auxiliary splicing ele-

ments are ESEs, sequences that are internal to exons and (see Antic and Keene 1997 [in this issue]), the ‘‘SELEX’’
method originally developed by Tuerk and Gold (1990).that function to enhance the use of specific splice sites.

The importance of exon sequences for splice-site recog- In the in vivo selection, enhancers were identified by
inserting a large pool of random 13-nucleotide se-nition was first revealed in studies of artificial b-globin

RNAs, in which the selection of either of two competing quences into the middle exon of a three-exon construct
and selecting for those that enhanced inclusion of thesplice sites was influenced by adjacent exonic sequences

(Reed and Maniatis 1986). Subsequent results from resident exon. This allowed the cellular splicing machin-
ery to identify those sequences with splicing-enhancermany experimental systems demonstrated that se-

quences internal to exons play a role in splice-site selec- activity, on the basis of function. The in vivo SELEX
strategy identified two general classes of splicing en-tion during both constitutive and alternative pre-mRNA
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Table 1

ESE Sequences

Sequencea Gene Reference(s)

Purine-rich ESEs:
GGAAGGACAGCAGAGACCAAGAG Human IgM (exon M2) Watakabe et al. (1993), Tanaka et al. (1994)
GAGAUGUGAUGAAGGAGAUGGGAGG Human HPRT (exon 3) Steingrimsdottir et al. (1992), Tanaka et al.

(1994)
GAAGAAGAC Human fibronectin (exon ED1) Lavigueur et al. (1993), Caputi et al. (1994)
GAAGAAGAAG Human calcitonin (exon 3) Yeakley et al. (1996)
CUUCCGGAAG Bovine growth hormone (exon 5) Hampson et al. (1989), Dirksen et al. (1994)
GAGGAAGAGAAAAGGGCAGCAGAGGAGAGGCA Chicken caldesmon (exon 5) Humphrey et al. (1995)
AAGAGGAAGAAUGGCUUGAGGAAGACGACG Chicken cTNT (exon 5) Xu et al. (1993)
AAAGGACAAAGGACAAAA Drosophila doublesex (exon 4)b Lynch and Maniatis (1995)

ACEs:
ACUUCAACAAGUU Human calcitonin (exon 4) van Oers et al. (1994)
CCACCAGAAGGUAUG Chicken cTNT (exon 16) Wang et al. (1995)
UCUUCAAUCAACA Drosophila doublesex (exon 4)b Ryner and Baker (1991), Inoue et al. (1992),

Lynch and Maniatis (1995)

a With the exception of the ACE in human calcitonin, each of the sequences shown has been demonstrated to have autonomous enhancer
activity in an exogenous exon. In their native RNA, many of these sequences are likely to function in combination with additional exonic
enhancer elements that are not shown.

b For regulated splicing both the purine-rich and ACE enhancers of doublesex are required, but both sequences independently confer constitu-
tive splicing-enhancer activity.

hancers: a purine-rich motif resembling previously iden- complex on the pre-mRNA (Fu 1995; Manley and Tacke
1996). SR proteins bound to ESEs are thought to recruittified ESEs and a novel A/C-rich enhancer called ‘‘ACE.’’
key splicing factors to a localized region near the af-ACE enhancer activity was confirmed by point mutants
fected splice site, enhancing its recognition (Berget 1995;and by the ability of the selected elements to activate
Reed 1996).splicing of additional exons. Although not previously

SR proteins affect alternative-splice-site selection inrecognized as a class of splicing enhancers, functional
vitro. Interestingly, individual members of the SR familyACE elements have been identified in several exons in
proteins differ qualitatively in which splice sites theywhich splicing has been studied extensively (van Oers
select (Zahler et al. 1993). This raises the possibilityet al. 1994; Wang et al. 1995; Coulter et al. 1997) (see
that tissue-specific expression of SR proteins may drivetable 1). Multiple purine-rich and non–purine-rich en-
variations in splicing patterns. For instance, the expres-hancers were also identified in a similar SELEX-based
sion levels of specific members of the SR protein familyapproach, by use of an in vitro assay to select sequences
during T-cell activation correlate with the level of inclu-that improve splicing efficiency (Tian and Kole 1995).
sion of a CD44 variable exon, implying a possible roleInterestingly, both the in vivo selection and the in vitro
for SR proteins in formation of specific CD44 spliceselection identified a complex group of enhancers with
variants (Screaton et al. 1995).a number of sequences represented only once in the set

The interaction between SR proteins and ESEs mayof selected clones. This strongly suggests that a large
be an important target for regulation by other tissue-number of sequences can function as ESEs and that use
specific factors. By far the best-described example of thisof auxiliary splicing enhancers within exons may be
comes from studies on the pre-mRNA that encodes thewidespread within the genome.
Drosophila sex-determination factor, doublesex
(McKeown 1992). In this case, the assembly of a func-Alternative Splicing, ESE Function, and SR Proteins
tional SR protein complex on the repeated ESEs in the

A key step in the understanding of splicing-enhancer doublesex pre-mRNA depends on the presence of two
function was the realization that purine-rich ESEs are regulatory proteins, transformer and transformer-2,
recognized by members of the SR family of splicing fac- which bind SR proteins and associate with ESEs (Tian
tors, a group of structurally related and highly conserved and Maniatis 1993; Amrein et al. 1994; Heinrichs and
RNA-binding proteins (Roth et al. 1990; Fu 1995). SR Baker 1995; Lynch and Maniatis 1995, 1996). Because
proteins play essential roles in the early steps of splice- transformer protein is expressed only in female flies
site recognition and interact directly with snRNP-associ- (Boggs et al. 1987), formation of the ESE/SR complex

is sex specific.ated proteins to facilitate assembly of the prespliceosome
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Although vertebrate ESEs are typically found in alter- splicing have been associated with malignant transfor-
mation and metastasis (Mochizuki et al. 1992; Oyamanatively spliced pre-mRNAs, it remains uncertain

whether all of these sequences function in cell-type–spe- et al. 1993; Salmi et al. 1993). The best example of this
is the cell-surface–adhesion molecule CD44 (reviewedcific splicing. In some cases it appears that ESEs serve

only as general splicing elements that improve the utili- in Cooper and Dougherty 1995). Extensive alternative
splicing of the CD44 pre-mRNA, involving §12 vari-zation of suboptimal splice sites that would otherwise

be ignored by the general splicing machinery; for in- able exons, produces a variety of protein isoforms ac-
cording to complex tissue-specific and developmentalstance, the alternatively spliced cTNT exon 5 contains

an ESE that improves the efficiency of exon inclusion regulatory patterns. Although the specific functions of
the isoforms are unknown, variable exons encode parts(see fig. 1A), but cell-type–specific regulation is con-

ferred by the intronic MSE elements (Xu et al. 1993; of a multifunctional extracellular domain that bind com-
ponents of the extracellular matrix—in particular, hy-Ryan and Cooper 1996). It is important to note that

cell-specific differences in exon inclusion are observed aluronan and proteoglycans (Aruffo et al. 1990). A num-
ber of studies suggest that reexpression of CD44 variableeven in the absence of the cTNT ESE, indicating that it

is not required for regulation. Nonetheless, given the exons determines the metastatic potential of some can-
cer-cell lines. Expression levels and RNA splicing pat-frequency at which ESEs are found in alternatively

spliced pre-mRNAs, it is difficult to imagine that cell- terns of CD44 correlate with the expression of certain
SR proteins and differ between malignant cells andtype–specific regulation does not involve ESEs.
matched normal cells (Tanabe et al. 1993; Screaton et
al. 1995). More important, overexpression of specificA Role for ESEs in Human Genetic Disease
CD44 splice variants is sufficient to establish metastatic
potential in nonmetastasizing cell lines (Gunthert et al.Fifteen percent of all point mutants that result in hu-

man genetic disease create an RNA splicing defect 1991; Dougherty et al. 1992). Altering expression of
metastasis-associated isoforms by antibodies or anti-(Krawczak et al. 1992). A significant fraction of these

affect exon sequences that are distinct from the consen- sense reduces metastatic behavior of cell lines (Seiter et
al. 1993; Merzak et al. 1994).sus splicing signals near the intron/exon borders. Dis-

ease-causing point mutations that are likely to disrupt The correlation between metastasis and patterns of
CD44 splicing suggests that metastatic transformationESEs have been identified in a variety of genes (see table

2). Of the nine mutations shown in table 2, all but one can result from changes in components of the splicing
machinery that affect cell-specific or general exon recog-has been demonstrated to disrupt splicing in the affected

gene (fig. 1B). Four of the mutations are within purine- nition (fig. 1C). If so, the cis-acting ESEs and the trans-
acting SR proteins may provide targets for novel thera-rich regions, two are within AC-rich regions, and three

are in sequences that do not resemble ACE or purine- pies that will ameliorate genetic diseases by altering pat-
terns of pre-mRNA splicing (for an example, see Siera-rich ESEs. Demonstration that the exon mutations listed

in table 2 disrupt splicing enhancers will require evi- kowska et al. 1996) Interestingly, in the case of some
muscular dystrophies, naturally occurring alternativedence that the affected sequences function autono-

mously and that enhancer function is lost in the mutant. splicing may provide a mechanism by which severe mu-
tations are tolerated. Approximately 60% of the casesA splicing enhancer has been most convincingly identi-

fied in the case of the hypoxanthine phosphoribosyl- of Duchenne muscular dystrophy (DMD) and Becker
muscular dystrophy (BMD) are caused by intragenic de-transferase (HPRT) gene, HPRT. HPRT mRNA splicing

was found to cause HPRT deficiency in a significant letions within the 2.4-Mb dystrophin gene. In the more
severe form, DMD, genomic deletions put the mRNAfraction of lymphocyte colonies selected from normal

human subjects. In one study (Steingrimsdottir et al. out of frame, whereas in the milder form, BMD, the
remaining exons encode in-frame proteins that contain1992), 3 of 34 HPRT splicing mutations were located

internal to the exonic portion of splice sites and did not internal deletions (Malhotra et al. 1988; Koenig et al.
1989). Presumably, the shortened in-frame proteins re-introduce cryptic splice sites or stop codons (for a review

of the effects of stop codons on RNA processing and tain residual function, which results in a less severe phe-
notype. However, rare exceptions to this ‘‘reading framestability, see Maquat 1995). At least one of these mu-

tants affects a sequence that functions as an autonomous theory’’ were found, for both DMD and BMD; for ex-
ample, cases that presented clinically as BMD containedESE when inserted into another gene (Tanaka et al.

1994). out-of-frame genomic deletions. Analysis of dystrophin
mRNAs by reverse-transcriptase–PCR (RT-PCR) in sev-Pertubations in cellular splicing factors may affect ei-

ther the efficiency of splicing or the regulation of alterna- eral of these BMD patients demonstrated a low level of
in-frame mRNAs produced by alternative splicing of onetive splicing and therefore may also be associated with

disease states; for instance, changes in the efficiency of or more exons (see fig. 1D) and suggest a potential mech-
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Table 2

Exonic Mutations That Cause Disease and Affect Splicing

CHANGE

NATURAL SEQUENCEa Nucleotide Amino Acid GENE AFFECTED DISEASE REFERENCE

ATGAGAGTGATTCGCGTGGGTACCCGCAAGAG CrG Silent Porphobilinogen deaminase Intermittent porphyria Llewellyn et al. (1996)
ATTGGAGACACGGTGAG GrA Silent Integrin GPIIIa Glanzmann thrombocytopenia Jin et al. (1996)
CCTTATGAACGACTGGAGTG CrT Silent Fumarylacetoacetate hydrolase Hereditary tyrosinemia I van Amstel et al. (1996)
CCTGTAAGTATAATGGAAAAGATGAGGTCTGCCTGACTTT ArG Silent Pyruvate dehydrogenase E1a Leigh encephalomyelopathy de Meirleir et al. (1994)
GCAATGGTGGGAGATGGAATCAATGACTCCCAGCTCTGGC GrA GlyrArg MNK Menkes disease Das et al. (1994)
CAGGAGGGGGAGCGAGACTTC CrT Glnrstop Adenosine deaminase Adenosine deaminase deficiencyb Santisteban et al. (1995)
agCTACCACAGCCCCTAAACCCGCAACAGÉTTGTTACRGGTTc G vs. A Silent Episialin Allelic difference Ligtenberg et al. (1990)
agTCTCTGCCCACAGTGATACCACTGCAGÉAc CrT ThrrIle Arylsulfatase A Metchromatic leukodystrophy Hasegawa et al. (1994)
agCTTGCGCCGGGACATAGAAG CrT LeurPro b-Hexosaminidase b-subunit Sandhoff disease Wakamatsu et al. (1992)

a Lowercase letters denote intronic sequence; uppercase letters denote exonic sequence; and the mutated is underlined.
b The case of adenosine deaminase deficiency was reported to be due to a mutation in the putative splicing enhancer; however, since this mutation also introduces a stop codon, the actual mechanism of exon

skipping remains to be determined.
c The vertical bar represents an alternative downstream 3� splice site; when R Å G, the upstream 3� splice site was used; and when R Å A, the downstream 3� splice site was used.
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